Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.732
Filter
1.
Sci Rep ; 14(1): 8940, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637536

ABSTRACT

An abnormality of structures and functions in the hippocampus may have a key role in the pathophysiology of major depressive disorder (MDD). However, it is unclear whether structure factors of the hippocampus effectively impact antidepressant responses by hippocampal functional activity in MDD patients. We collected longitudinal data from 36 MDD patients before and after a 3-month course of antidepressant pharmacotherapy. Additionally, we obtained baseline data from 43 healthy controls matched for sex and age. Using resting-state functional magnetic resonance imaging (rs-fMRI), we estimated the dynamic functional connectivity (dFC) of the hippocampal subregions using a sliding-window method. The gray matter volume was calculated using voxel-based morphometry (VBM). The results indicated that patients with MDD exhibited significantly lower dFC of the left rostral hippocampus (rHipp.L) with the right precentral gyrus, left superior temporal gyrus and left postcentral gyrus compared to healthy controls at baseline. In MDD patients, the dFC of the rHipp.L with right precentral gyrus at baseline was correlated with both the rHipp.L volume and HAMD remission rate, and also mediated the effects of the rHipp.L volume on antidepressant performance. Our findings suggested that the interaction between hippocampal structure and functional activity might affect antidepressant performance, which provided a novel insight into the hippocampus-related neurobiological mechanism of MDD.


Subject(s)
Depressive Disorder, Major , Motor Cortex , Humans , Gray Matter/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain
2.
BMC Psychiatry ; 24(1): 313, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658896

ABSTRACT

BACKGROUND: Distinguishing untreated major depressive disorder without medication (MDD) from schizophrenia with depressed mood (SZDM) poses a clinical challenge. This study aims to investigate differences in fractional amplitude of low-frequency fluctuations (fALFF) and cognition in untreated MDD and SZDM patients. METHODS: The study included 42 untreated MDD cases, 30 SZDM patients, and 46 healthy controls (HC). Cognitive assessment utilized the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted, and data were processed using fALFF in slow-4 and slow-5 bands. RESULTS: Significant fALFF changes were observed in four brain regions across MDD, SZDM, and HC groups for both slow-4 and slow-5 fALFF. Compared to SZDM, the MDD group showed increased slow-5 fALFF in the right gyrus rectus (RGR). Relative to HC, SZDM exhibited decreased slow-5 fALFF in the left gyrus rectus (LGR) and increased slow-5 fALFF in the right putamen. Changes in slow-5 fALFF in both RGR and LGR were negatively correlated with RBANS scores. No significant correlations were found between remaining fALFF (slow-4 and slow-5 bands) and RBANS scores in MDD or SZDM groups. CONCLUSIONS: Alterations in slow-5 fALFF in RGR may serve as potential biomarkers for distinguishing MDD from SZDM, providing preliminary insights into the neural mechanisms of cognitive function in schizophrenia.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Schizophrenia , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Schizophrenia/physiopathology , Schizophrenia/diagnostic imaging , Schizophrenia/complications , Cognition/physiology , Brain/physiopathology , Brain/diagnostic imaging , Neuropsychological Tests/statistics & numerical data , Middle Aged , Young Adult , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging
3.
Eur Psychiatry ; 67(1): e33, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572583

ABSTRACT

BACKGROUND: Amygdala subregion-based network dysfunction has been determined to be centrally implicated in major depressive disorder (MDD). Little is known about whether ketamine modulates amygdala subarea-related networks. We aimed to investigate the relationships between changes in the resting-state functional connectivity (RSFC) of amygdala subregions and ketamine treatment and to identify important neuroimaging predictors of treatment outcomes. METHODS: Thirty-nine MDD patients received six doses of ketamine (0.5 mg/kg). Depressive symptoms were assessed, and magnetic resonance imaging (MRI) scans were performed before and after treatment. Forty-five healthy controls underwent one MRI scan. Seed-to-voxel RSFC analyses were performed on the amygdala subregions, including the centromedial amygdala (CMA), laterobasal amygdala (LBA), and superficial amygdala subregions. RESULTS: Abnormal RSFC between the left LBA and the left precuneus in MDD patients is related to the therapeutic efficacy of ketamine. There were significant differences in changes in bilateral CMA RSFC with the left orbital part superior frontal gyrus and in changes in the left LBA with the right middle frontal gyrus between responders and nonresponders following ketamine treatment. Moreover, there was a difference in the RSFC of left LBA and the right superior temporal gyrus/middle temporal gyrus (STG/MTG) between responders and nonresponders at baseline, which could predict the antidepressant effect of ketamine on Day 13. CONCLUSIONS: The mechanism by which ketamine improves depressive symptoms may be related to its regulation of RSFC in the amygdala subregion. The RSFC between the left LBA and right STG/MTG may predict the response to the antidepressant effect of ketamine.


Subject(s)
Amygdala , Antidepressive Agents , Depressive Disorder, Major , Ketamine , Magnetic Resonance Imaging , Humans , Ketamine/pharmacology , Ketamine/administration & dosage , Ketamine/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Amygdala/drug effects , Amygdala/diagnostic imaging , Amygdala/physiopathology , Male , Female , Adult , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Antidepressive Agents/administration & dosage , Middle Aged , Treatment Outcome
4.
Br J Psychiatry ; 224(5): 170-178, 2024 May.
Article in English | MEDLINE | ID: mdl-38602159

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. AIMS: Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. METHOD: A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. RESULTS: Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. CONCLUSIONS: Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.


Subject(s)
Depressive Disorder, Major , Gray Matter , Magnetic Resonance Imaging , Humans , Depressive Disorder, Major/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Male , Adult , Middle Aged , Connectome , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Case-Control Studies , Neuroimaging , Young Adult , Brain/pathology , Brain/diagnostic imaging , Default Mode Network/diagnostic imaging , Default Mode Network/pathology , Default Mode Network/physiopathology
5.
Transl Psychiatry ; 14(1): 141, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461185

ABSTRACT

Major depressive disorder (MDD) is a common mental illness worldwide and is triggered by an intricate interplay between environmental and genetic factors. Although there are several studies on common variants in MDD, studies on rare variants are relatively limited. In addition, few studies have examined the genetic contributions to neurostructural alterations in MDD using whole-exome sequencing (WES). We performed WES in 367 patients with MDD and 161 healthy controls (HCs) to detect germline and copy number variations in the Korean population. Gene-based rare variants were analyzed to investigate the association between the genes and individuals, followed by neuroimaging-genetic analysis to explore the neural mechanisms underlying the genetic impact in 234 patients with MDD and 135 HCs using diffusion tensor imaging data. We identified 40 MDD-related genes and observed 95 recurrent regions of copy number variations. We also discovered a novel gene, FRMPD3, carrying rare variants that influence MDD. In addition, the single nucleotide polymorphism rs771995197 in the MUC6 gene was significantly associated with the integrity of widespread white matter tracts. Moreover, we identified 918 rare exonic missense variants in genes associated with MDD susceptibility. We postulate that rare variants of FRMPD3 may contribute significantly to MDD, with a mild penetration effect.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Diffusion Tensor Imaging , Exome Sequencing , DNA Copy Number Variations , Neuroimaging
6.
PLoS One ; 19(3): e0299528, 2024.
Article in English | MEDLINE | ID: mdl-38466739

ABSTRACT

BACKGROUND: Rates of depression and addiction have risen drastically over the past decade, but the lack of integrative techniques remains a barrier to accurate diagnoses of these mental illnesses. Changes in reward/aversion behavior and corresponding brain structures have been identified in those with major depressive disorder (MDD) and cocaine-dependence polysubstance abuse disorder (CD). Assessment of statistical interactions between computational behavior and brain structure may quantitatively segregate MDD and CD. METHODS: Here, 111 participants [40 controls (CTRL), 25 MDD, 46 CD] underwent structural brain MRI and completed an operant keypress task to produce computational judgment metrics. Three analyses were performed: (1) linear regression to evaluate groupwise (CTRL v. MDD v. CD) differences in structure-behavior associations, (2) qualitative and quantitative heatmap assessment of structure-behavior association patterns, and (3) the k-nearest neighbor machine learning approach using brain structure and keypress variable inputs to discriminate groups. RESULTS: This study yielded three primary findings. First, CTRL, MDD, and CD participants had distinct structure-behavior linear relationships, with only 7.8% of associations overlapping between any two groups. Second, the three groups had statistically distinct slopes and qualitatively distinct association patterns. Third, a machine learning approach could discriminate between CTRL and CD, but not MDD participants. CONCLUSIONS: These findings demonstrate that variable interactions between computational behavior and brain structure, and the patterns of these interactions, segregate MDD and CD. This work raises the hypothesis that analysis of interactions between operant tasks and structural neuroimaging might aide in the objective classification of MDD, CD and other mental health conditions.


Subject(s)
Depressive Disorder, Major , Substance-Related Disorders , Humans , Depressive Disorder, Major/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging , Substance-Related Disorders/psychology
7.
Transl Psychiatry ; 14(1): 136, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443354

ABSTRACT

Major depressive disorder (MDD) is associated with functional disturbances in subcortical regions. In this naturalistic prospective study (NCT03294525), we aimed to investigate relationships among subcortical functional connectivity (FC), mood symptom profiles and treatment outcome in MDD using multivariate methods. Medication-free participants with MDD (n = 135) underwent a functional magnetic resonance imaging scan at baseline and completed posttreatment clinical assessment after 8 weeks of antidepressant monotherapy. We used partial least squares (PLS) correlation analysis to explore the association between subcortical FC and mood symptom profiles. FC score, reflecting the weighted representation of each individual in this association, was computed. Replication analysis was undertaken in an independent sample (n = 74). We also investigated the relationship between FC score and treatment outcome in the main sample. A distinctive subcortical connectivity pattern was found to be associated with negative affect. In general, higher FC between the caudate, putamen and thalamus was associated with greater negative affect. This association was partly replicated in the independent sample (similarity between the two samples: r = 0.66 for subcortical connectivity, r = 0.75 for mood symptom profile). Lower FC score predicted both remission and response to treatment after 8 weeks of antidepressant monotherapy. The emphasis here on the role of dorsal striatum and thalamus consolidates prior work of subcortical connectivity in MDD. The findings provide insight into the pathogenesis of MDD, linking subcortical FC with negative affect. However, while the FC score significantly predicted treatment outcome, the low odds ratio suggests that finding predictive biomarkers for depression remains an aspiration.


Subject(s)
Depressive Disorder, Major , Humans , Affect , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Prospective Studies , Treatment Outcome
8.
JAMA Netw Open ; 7(3): e241933, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38470418

ABSTRACT

Importance: Adolescent major depressive disorder (MDD) is associated with serious adverse implications for brain development and higher rates of self-injury and suicide, raising concerns about its neurobiological mechanisms in clinical neuroscience. However, most previous studies regarding the brain alterations in adolescent MDD focused on single-modal images or analyzed images of different modalities separately, ignoring the potential role of aberrant interactions between brain structure and function in the psychopathology. Objective: To examine alterations of structural and functional connectivity (SC-FC) coupling in adolescent MDD by integrating both diffusion magnetic resonance imaging (MRI) and resting-state functional MRI data. Design, Setting, and Participants: This cross-sectional study recruited participants aged 10 to 18 years from January 2, 2020, to December 28, 2021. Patients with first-episode MDD were recruited from the outpatient psychiatry clinics at The First Affiliated Hospital of Chongqing Medical University. Healthy controls were recruited by local media advertisement from the general population in Chongqing, China. The sample was divided into 5 subgroup pairs according to different environmental stressors and clinical characteristics. Data were analyzed from January 10, 2022, to February 20, 2023. Main Outcomes and Measures: The SC-FC coupling was calculated for each brain region of each participant using whole-brain SC and FC. Primary analyses included the group differences in SC-FC coupling and clinical symptom associations between SC-FC coupling and participants with adolescent MDD and healthy controls. Secondary analyses included differences among 5 types of MDD subgroups: with or without suicide attempt, with or without nonsuicidal self-injury behavior, with or without major life events, with or without childhood trauma, and with or without school bullying. Results: Final analyses examined SC-FC coupling of 168 participants with adolescent MDD (mean [mean absolute deviation (MAD)] age, 16.0 [1.7] years; 124 females [73.8%]) and 101 healthy controls (mean [MAD] age, 15.1 [2.4] years; 61 females [60.4%]). Adolescent MDD showed increased SC-FC coupling in the visual network, default mode network, and insula (Cohen d ranged from 0.365 to 0.581; false discovery rate [FDR]-corrected P < .05). Some subgroup-specific alterations were identified via subgroup analyses, particularly involving parahippocampal coupling decrease in participants with suicide attempt (partial η2 = 0.069; 90% CI, 0.025-0.121; FDR-corrected P = .007) and frontal-limbic coupling increase in participants with major life events (partial η2 ranged from 0.046 to 0.068; FDR-corrected P < .05). Conclusions and Relevance: Results of this cross-sectional study suggest increased SC-FC coupling in adolescent MDD, especially involving hub regions of the default mode network, visual network, and insula. The findings enrich knowledge of the aberrant brain SC-FC coupling in the psychopathology of adolescent MDD, underscoring the vulnerability of frontal-limbic SC-FC coupling to external stressors and the parahippocampal coupling in shaping future-minded behavior.


Subject(s)
Adverse Childhood Experiences , Depressive Disorder, Major , Female , Humans , Adolescent , Depressive Disorder, Major/diagnostic imaging , Cross-Sectional Studies , Depression , Brain/diagnostic imaging
9.
Neuroimage Clin ; 41: 103581, 2024.
Article in English | MEDLINE | ID: mdl-38430800

ABSTRACT

Arterial spin labeling (ASL) can be used to detect differences in perfusion for multiple brain regions thought to be important in major depressive disorder (MDD). However, the potential of cerebral blood flow (CBF) to predict MDD and its correlations between the blood lipid levels and immune markers, which are closely related to MDD and brain function change, remain unclear. The 451 individuals - 298 with MDD and 133 healthy controls who underwent MRI at a single time point with arterial spin labelling and a high resolution T1-weighted structural scan. A proportion of MDD also provided blood samples for analysis of lipid and immune markers. We performed CBF case-control comparisons, random forest model construction, and exploratory correlation analyses. Moreover, we investigated the relationship between gray matter volume (GMV), blood lipids, and the immune system within the same sample to assess the differences in CBF and GMV. We found that the left inferior parietal but supramarginal and angular gyrus were significantly different between the MDD patients and HCs (voxel-wise P < 0.001, cluster-wise FWE correction). And bilateral inferior temporal (ITG), right middle temporal gyrus and left precentral gyrus CBF predict MDD (the area under the receiver operating characteristic curve of the random forest model is 0.717) and that CBF is a more sensitive predictor of MDD than GMV. The left ITG showed a positive correlation trend with immunoglobulin G (r = 0.260) and CD4 counts (r = 0.283). The right ITG showed a correlation trend with Total Cholesterol (r = -0.249) and tumour necrosis factor-alpha (r = -0.295). Immunity and lipids were closely related to CBF change, with the immunity relationship potentially playing a greater role. The interactions between CBF, plasma lipids and immune index could therefore represent an MDD pathophysiological mechanism. The current findings provide evidence for targeted regulation of CBF or immune properties in MDD.


Subject(s)
Depressive Disorder, Major , Gray Matter , Humans , Gray Matter/diagnostic imaging , Gray Matter/pathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Depression , Brain/pathology , Magnetic Resonance Imaging , Cerebrovascular Circulation/physiology , Spin Labels , Biomarkers , Lipids
10.
J Affect Disord ; 355: 265-282, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38554884

ABSTRACT

N-acetyl aspartate (NAA) is a marker of neuronal integrity and metabolism. Deficiency in neuronal plasticity and hypometabolism are implicated in Major Depressive Disorder (MDD) pathophysiology. To test if cerebral NAA concentrations decrease progressively over the MDD course, we conducted a pre-registered meta-analysis of Proton Magnetic Resonance Spectroscopy (1H-MRS) studies comparing NAA concentrations in chronic MDD (n = 1308) and first episode of depression (n = 242) patients to healthy controls (HC, n = 1242). Sixty-two studies were meta-analyzed using a random-effect model for each brain region. NAA concentrations were significantly reduced in chronic MDD compared to HC within the frontal lobe (Hedges' g = -0.330; p = 0.018), the occipital lobe (Hedges' g = -0.677; p = 0.007), thalamus (Hedges' g = -0.673; p = 0.016), and frontal (Hedges' g = -0.471; p = 0.034) and periventricular white matter (Hedges' g = -0.478; p = 0.047). We highlighted a gap of knowledge regarding NAA levels in first episode of depression patients. Sensitivity analyses indicated that antidepressant treatment may reverse NAA alterations in the frontal lobe. We highlighted field strength and correction for voxel grey matter as moderators of NAA levels detection. Future studies should assess NAA alterations in the early stages of the illness and their longitudinal progression.


Subject(s)
Aspartic Acid/analogs & derivatives , Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Proton Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Brain/diagnostic imaging , Brain/metabolism , Aspartic Acid/metabolism , Creatine/metabolism , Choline/metabolism
11.
Article in English | MEDLINE | ID: mdl-38512734

ABSTRACT

Depression ranks among the most prevalent mood-related psychiatric disorders. Existing clinical diagnostic approaches relying on scale interviews are susceptible to individual and environmental variations. In contrast, the integration of neuroimaging techniques and computer science has provided compelling evidence for the quantitative assessment of major depressive disorder (MDD). However, one of the major challenges in computer-aided diagnosis of MDD is to automatically and effectively mine the complementary cross-modal information from limited datasets. In this study, we proposed a few-shot learning framework that integrates multi-modal MRI data based on contrastive learning. In the upstream task, it is designed to extract knowledge from heterogeneous data. Subsequently, the downstream task is dedicated to transferring the acquired knowledge to the target dataset, where a hierarchical fusion paradigm is also designed to integrate features across inter- and intra-modalities. Lastly, the proposed model was evaluated on a set of multi-modal clinical data, achieving average scores of 73.52% and 73.09% for accuracy and AUC, respectively. Our findings also reveal that the brain regions within the default mode network and cerebellum play a crucial role in the diagnosis, which provides further direction in exploring reproducible biomarkers for MDD diagnosis.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Learning , Magnetic Resonance Imaging , Neuroimaging , Affect
12.
Psychiatry Res Neuroimaging ; 340: 111792, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484532

ABSTRACT

We investigated the neuroimaging changes and clinical efficacy of repetitive transcranial magnetic stimulation (rTMS) combined with antidepressants in major depressive disorder (MDD) patients. We scanned 35 patients with MDD and 27 healthy controls (HC) with resting-state functional magnetic resonance imaging (fMRI) before and after treatment. We analyzed amplitude of low-frequency fluctuation (ALFF) and the correlation with clinical variables. The rate of significant efficacy after treatment was higher in the combination treatment group than in the antidepressant group, although not statistically significant. At baseline, ALFF increased in the left middle temporal, brain stem, and left cerebellum and decreased in the right anterior cingulate (ACC), right orbital frontal cortex (OFC), and right caudate. ALFF increased in the left fusiform and decreased in the right lingual gyrus, left middle occipital gyrus, and left superior occipital gyrus after antidepressants. ALFF increased in the right ACC, right OFC, and right rectus after combination treatment. ALFF changes in the right ACC/OFC were negatively correlated with HAMD changes. After treatment, abnormal activity in some brain regions normalized, but these regions differed between the two treatment groups. rTMS combined with antidepressants therapy may improve MDD symptoms by improving neuronal activity levels in the right ACC and right OFC.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Transcranial Magnetic Stimulation , Brain Mapping , Magnetic Resonance Imaging/methods , Antidepressive Agents/therapeutic use
13.
Hum Brain Mapp ; 45(5): e26670, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553866

ABSTRACT

Major depressive disorder (MDD) is a clinically heterogeneous disorder. Its mechanism is still unknown. Although the altered intersubject variability in functional connectivity (IVFC) within gray-matter has been reported in MDD, the alterations to IVFC within white-matter (WM-IVFC) remain unknown. Based on the resting-state functional MRI data of discovery (145 MDD patients and 119 healthy controls [HCs]) and validation cohorts (54 MDD patients, and 78 HCs), we compared the WM-IVFC between the two groups. We further assessed the meta-analytic cognitive functions related to the alterations. The discriminant WM-IVFC values were used to classify MDD patients and predict clinical symptoms in patients. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging association analyses were further conducted to investigate gene expression profiles associated with WM-IVFC alterations in MDD, followed by a set of gene functional characteristic analyses. We found extensive WM-IVFC alterations in MDD compared to HCs, which were associated with multiple behavioral domains, including sensorimotor processes and higher-order functions. The discriminant WM-IVFC could not only effectively distinguish MDD patients from HCs with an area under curve ranging from 0.889 to 0.901 across three classifiers, but significantly predict depression severity (r = 0.575, p = 0.002) and suicide risk (r = 0.384, p = 0.040) in patients. Furthermore, the variability-related genes were enriched for synapse, neuronal system, and ion channel, and predominantly expressed in excitatory and inhibitory neurons. Our results obtained good reproducibility in the validation cohort. These findings revealed intersubject functional variability changes of brain WM in MDD and its linkage with gene expression profiles, providing potential implications for understanding the high clinical heterogeneity of MDD.


Subject(s)
Depressive Disorder, Major , White Matter , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Transcriptome , Reproducibility of Results , Brain/diagnostic imaging , White Matter/diagnostic imaging , Magnetic Resonance Imaging/methods
14.
Neuroreport ; 35(6): 380-386, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526956

ABSTRACT

This study aims to investigate the functional connectivity (FC) changes of the habenula (Hb) among patients with major depressive disorder (MDD) after 12 weeks of duloxetine treatment (MDD12). Patients who were diagnosed with MDD for the first time and were drug-naïve were recruited at baseline as cases. Healthy controls (HCs) matched for sex, age, and education level were also recruited at the same time. At baseline, all participants underwent resting-state functional MRI. FC analyses were performed using the Hb seed region of interest, and three groups including HCs, MDD group and MDD12 group were compared using whole-brain voxel-wise comparisons. Compared to the HCs, the MDD group had decreased FC between the Hb and the right anterior cingulate cortex at baseline. Compared to the HCs, the FC between the Hb and the left medial superior frontal gyrus decreased in the MDD12 group. Additionally, the FC between the left precuneus, bilateral cuneus and Hb increased in the MDD12 group than that in the MDD group. No significant correlation was found between HDRS-17 and the FC between the Hb, bilateral cuneus, and the left precuneus in the MDD12 group. Our study suggests that the FC between the post-default mode network and Hb may be the treatment mechanism of duloxetine and the treatment mechanisms and the pathogenesis of depression may be independent of each other.


Subject(s)
Depressive Disorder, Major , Habenula , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Duloxetine Hydrochloride/pharmacology , Duloxetine Hydrochloride/therapeutic use , Default Mode Network , Magnetic Resonance Imaging , Rest/physiology
15.
PLoS One ; 19(3): e0299625, 2024.
Article in English | MEDLINE | ID: mdl-38547128

ABSTRACT

Major depressive disorder (MDD), a prevalent mental health issue, affects more than 8% of the US population, and almost 17% in the young group of 18-25 years old. Since Covid-19, its prevalence has become even more significant. However, the remission (being free of depression) rates of first-line antidepressant treatments on MDD are only about 30%. To improve treatment outcomes, researchers have built various predictive models for treatment responses and yet none of them have been adopted in clinical use. One reason is that most predictive models are based on data from subjective questionnaires, which are less reliable. Neuroimaging data are promising objective prognostic factors, but they are expensive to obtain and hence predictive models using neuroimaging data are limited and such studies were usually in small scale (N<100). In this paper, we proposed an advanced machine learning (ML) pipeline for small training dataset with large number of features. We implemented multiple imputation for missing data and repeated K-fold cross validation (CV) to robustly estimate predictive performances. Different feature selection methods and stacking methods using 6 general ML models including random forest, gradient boosting decision tree, XGBoost, penalized logistic regression, support vector machine (SVM), and neural network were examined to evaluate the model performances. All predictive models were compared using model performance metrics such as accuracy, balanced accuracy, area under ROC curve (AUC), sensitivity and specificity. Our proposed ML pipeline was applied to a training dataset and obtained an accuracy and AUC above 0.80. But such high performance failed while applying our ML pipeline using an external validation dataset from the EMBARC study which is a multi-center study. We further examined the possible reasons especially the site heterogeneity issue.


Subject(s)
COVID-19 , Depressive Disorder, Major , Humans , Adolescent , Young Adult , Adult , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Area Under Curve , Benchmarking , COVID-19/diagnostic imaging , Neuroimaging
16.
J Psychiatr Res ; 173: 41-47, 2024 May.
Article in English | MEDLINE | ID: mdl-38479347

ABSTRACT

BACKGROUND: Sleep disturbance is one of the most frequent somatic symptoms in major depressive disorder (MDD), but the neural mechanisms behind it are not well understood. Sleep efficiency (SE) is a good indicator of early awakening and difficulty falling asleep in MDD patients. Our study aimed to investigate the relationship between sleep efficiency and brain function in MDD patients. METHODS: We recruited 131 MDD patients from the Fourth People's Hospital in Hefei, and 71 well-matched healthy controls who were enrolled from the community. All subjects underwent resting-state functional MRI. Brain function was measured using the fractional amplitude of low-frequency fluctuation (fALFF), sleep efficiency was objectively measured by polysomnography (PSG), and clinical scales were used to evaluate depressive symptoms and sleep status. Multivariate regression analysis was performed to assess the relationship between the amplitude of the low frequency fluctuation fraction and sleep efficiency. RESULT: Three brain regions with relevance to sleep efficiency in MDD patients were found: inferior occipital gyrus (Number of voxels = 25, peak MNI coordinate x/y/z = -42/-81/-6, Peak intensity = 4.3148), middle occipital gyrus (Number of voxels = 55, peak MNI coordinate x/y/z = -30/-78/18, Peak intensity = 5.111), and postcentral gyrus (Number of voxels = 26, peak MNI coordinate x/y/z = -27/-33/60, Peak intensity = 4.1263). But there was no significant relationship between fALFF and SE in the healthy controls. CONCLUSION: The reduced sleep efficiency in MDD may be related to their lower neural activity in the inferior occipital gyrus, middle occipital gyrus, and postcentral gyrus. The findings may provide a potential neuroimaging basis for the clinical intervention in patients with major depressive disorder with sleep disturbances.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/complications , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain Mapping/methods , Sleep
17.
Comput Methods Programs Biomed ; 247: 108114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447315

ABSTRACT

BACKGROUND AND OBJECTIVE: Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder. METHODS: We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD. The functional connectivity (FC) was extracted from fMRI data as features. The framework addresses site heterogeneity by employing the Combat method to harmonize feature distribution differences. A feature selection method based on Fisher scores was used to reduce redundant information in the features. A data augmentation strategy using a Synthetic Minority Over-sampling Technique algorithm based on Extended Frobenius Norm measure was incorporated to increase the sample size. Furthermore, a residual module was integrated into the autoencoder network to preserve important features and improve the classification accuracy. RESULTS: We tested our framework on a large-scale, multisite fMRI dataset, which includes 189 rMDD patients and 427 healthy controls. The Res-DAE achieved an average accuracy of 75.1 % (sensitivity = 69 %, specificity = 77.8 %) in cross-validation, thereby outperforming comparison methods. In a larger dataset that also includes first-episode depression (comprising 832 MDD patients and 779 healthy controls), the accuracy reached 70 %. CONCLUSIONS: We proposed a deep learning framework that can effectively classify rMDD and 33 identify the altered FC associated with rMDD. Our study may reveal changes in brain function 34 associated with rMDD and provide assistance for the diagnosis and treatment of rMDD.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Brain Mapping , Algorithms , Brain/diagnostic imaging
18.
BMC Psychiatry ; 24(1): 183, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443878

ABSTRACT

BACKGROUND: Melancholic depression (MD) is one of the most prevalent and severe subtypes of major depressive disorder (MDD). Previous studies have revealed inconsistent results regarding alterations in grey matter volume (GMV) of the hippocampus and amygdala of MD patients, possibly due to overlooking the complexity of their internal structure. The hippocampus and amygdala consist of multiple and functionally distinct subregions, and these subregions may play different roles in MD. This study aims to investigate the volumetric alterations of each subregion of the hippocampus and amygdala in patients with MD and non-melancholic depression (NMD). METHODS: A total of 146 drug-naïve, first-episode MDD patients (72 with MD and 74 with NMD) and 81 gender-, age-, and education-matched healthy controls (HCs) were included in the study. All participants underwent magnetic resonance imaging (MRI) scans. The subregional segmentation of hippocampus and amygdala was performed using the FreeSurfer 6.0 software. The multivariate analysis of covariance (MANCOVA) was used to detect GMV differences of the hippocampal and amygdala subregions between three groups. Partial correlation analysis was conducted to explore the relationship between hippocampus or amygdala subfields and clinical characteristics in the MD group. Age, gender, years of education and intracranial volume (ICV) were included as covariates in both MANCOVA and partial correlation analyses. RESULTS: Patients with MD exhibited a significantly lower GMV of the right hippocampal tail compared to HCs, which was uncorrelated with clinical characteristics of MD. No significant differences were observed among the three groups in overall and subregional GMV of amygdala. CONCLUSIONS: Our findings suggest that specific hippocampal subregions in MD patients are more susceptible to volumetric alterations than the entire hippocampus. The reduced right hippocampal tail may underlie the unique neuropathology of MD. Future longitudinal studies are required to better investigate the associations between reduced right hippocampal tail and the onset and progression of MD.


Subject(s)
Depressive Disorder, Major , Gray Matter , Humans , Gray Matter/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Depression , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging
19.
Sci Rep ; 14(1): 4538, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402253

ABSTRACT

The hippocampus and amygdala have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Preclinical models suggest that stress-related changes in these regions can be reversed by antidepressants, including ketamine. Clinical studies have identified reduced volumes in MDD that are thought to be potentiated by early life stress and worsened by repeated depressive episodes. This study used 3T and 7T structural magnetic resonance imaging data to examine longitudinal changes in hippocampal and amygdalar subfield volumes associated with ketamine treatment. Data were drawn from a previous double-blind, placebo-controlled, crossover trial of healthy volunteers (HVs) unmedicated individuals with treatment-resistant depression (TRD) (3T: 18 HV, 26 TRD, 7T: 17 HV, 30 TRD) who were scanned at baseline and twice following either a 40 min IV ketamine (0.5 mg/kg) or saline infusion (acute: 1-2 days, interim: 9-10 days post infusion). No baseline differences were noted between the two groups. At 10 days post-infusion, a slight increase was observed between ketamine and placebo scans in whole left amygdalar volume in individuals with TRD. No other differences were found between individuals with TRD and HVs at either field strength. These findings shed light on the timing of ketamine's effects on cortical structures.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Ketamine , Humans , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/pathology , Healthy Volunteers , Hippocampus/pathology , Ketamine/pharmacology , Ketamine/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic
20.
Am J Psychiatry ; 181(3): 223-233, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38321916

ABSTRACT

OBJECTIVE: Response to antidepressant treatment in major depressive disorder varies substantially between individuals, which lengthens the process of finding effective treatment. The authors sought to determine whether a multimodal machine learning approach could predict early sertraline response in patients with major depressive disorder. They assessed the predictive contribution of MR neuroimaging and clinical assessments at baseline and after 1 week of treatment. METHODS: This was a preregistered secondary analysis of data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, a multisite double-blind, placebo-controlled randomized clinical trial that included 296 adult outpatients with unmedicated recurrent or chronic major depressive disorder. MR neuroimaging and clinical data were collected before and after 1 week of treatment. Performance in predicting response and remission, collected after 8 weeks, was quantified using balanced accuracy (bAcc) and area under the receiver operating characteristic curve (AUROC) scores. RESULTS: A total of 229 patients were included in the analyses (mean age, 38 years [SD=13]; 66% female). Internal cross-validation performance in predicting response to sertraline (bAcc=68% [SD=10], AUROC=0.73 [SD=0.03]) was significantly better than chance. External cross-validation on data from placebo nonresponders (bAcc=62%, AUROC=0.66) and placebo nonresponders who were switched to sertraline (bAcc=65%, AUROC=0.68) resulted in differences that suggest specificity for sertraline treatment compared with placebo treatment. Finally, multimodal models outperformed unimodal models. CONCLUSIONS: The study results confirm that early sertraline treatment response can be predicted; that the models are sertraline specific compared with placebo; that prediction benefits from integrating multimodal MRI data with clinical data; and that perfusion imaging contributes most to these predictions. Using this approach, a lean and effective protocol could individualize sertraline treatment planning to improve psychiatric care.


Subject(s)
Depressive Disorder, Major , Sertraline , Adult , Humans , Female , Male , Sertraline/therapeutic use , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/psychology , Double-Blind Method , Antidepressive Agents/therapeutic use , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...